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Abstract. A weakly nonlinear stability analysis is described for the buoyancy-driven flow between infinite vertical
planes that are subject to a constant vertical temperature gradient and a constant horizontal temperature difference.
For sufficiently high values of a Rayleigh number based on the vertical temperature gradient and gap width, and for
large Prandtl numbers, the critical two-dimensional mode of instability occurs as stationary convection. A nonlinear
amplitude equation governing the spatial and temporal development near the critical point is determined.

1. Introduction

The buoyancy-driven flow between vertical planes that are maintained at different tempera-
tures has been widely studied because of its relevance in a variety of geophysical, astrophysi-
cal and technological areas. Thermal properties of the flow are of importance in the context
of wall and window insulation and also in cooling systems for nuclear reactors. A more
recent application is to high-speed microcomputers where immersion-cooling techniques are
being developed to allow the close packing of electrical components on circuit boards.
Non-electrically conducting fluids that are used generally have high Prandtl numbers.

A horizontal temperature difference maintained across the gap between two vertical
planes produces an antisymmetric vertical flow up on the hot side and down on the cold side.
This flow is modified if a vertical temperature gradient is also present and an exact solution
of the Boussinesq equations for this situation has been given by Elder [1]. The appropriate
parameter that defines the base flow is a vertical Rayleigh number

R=a*g* AT} I*/xv =4y", (1)

where a* is the coefficient of thermal expansion, g* is the acceleration due to gravity, « is
the thermal diffusivity and v is the kinematic viscosity. The vertical temperature gradient is
AT?/1* where I* is the gap width between the planes.

The linear stability of this flow has been thoroughly examined by Bergholz [2] and when
the Prandtl number of the fluid, o = v/k, is infinite and y > vy, where y, = 6.3 (see Daniels
[3]) there is a stationary mode of instability for horizontal Rayleigh numbers

A=a*g*AT: "Ik (2)

greater than a certain critical value A_(y). Travelling modes of instability have critical
Rayleigh numbers A proportional to ¢'’? as ¢— = (see Gill and Kirkham [4]) and are
therefore of less significance at large Prandtl numbers. The asymptotic form as y — = of the
stationary mode of instability has been discussed by Daniels [5].
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The governing equations, boundary conditions and base flow are described in Section 2. In
Section 3 a weakly nonlinear analysis is developed to describe the finite-amplitude solutions
that evolve near A_. The results of this analysis are discussed in Section 4, partly in relation
to calculations and observations of secondary motion in vertical-slot flows. One reason for
studying the exact solution referred to above is that it approximates the type of flow that
develops at mid-height in a vertical slot with constant temperature sidewalls and closed ends,
a classical problem in thermal convection widely considered experimentally, theoretically
and numerically (see [3]). There the vertical temperature gradient is induced in the interior
of the slot by the presence of the end-walls but at mid-height detailed comparisons of the
exact solution with experimental results and theoretical results based on a boundary-layer
approximation are very favourable (see [1], [3]).

2. Governing equations and base flow

A fluid fills the gap —o < z* < o between parallel planes x* = + 3/* which are maintained at
temperatures

T*=T3+ 3 AT, +ATS 2*/1* (x* = £41%), 3)

where T is a suitable reference value. In the Boussinesq approximation the equations that
govern two-dimensional flow in the limit of infinite Prandtl number may be written

Vlﬂ—Aa—x—O, 4)
2 9T (T, )
V=t oG (5)

Here the co-ordinates x, z, time ¢ and stream function ¢ are made non-dimensional by the
quantities [*, [*k and « respectively, while T is the non-dimensional temperature perturba-
tion defined by

T*=T:+AT*T. (6)

The boundary conditions at the vertical planes are

_ 9 _

w—ax 0, T=Bz*1 onx==3, (7)
where B8 =AT}/AT?}.

The exact solution of (4), (5) and (7) of interest here is the bi-directional flow

b=yy=AD(x), T=T,=Bz+0(x). (8)

The functions ® and @ satisfy

®V-0'=0, O +4y'®' =0, (9)
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with boundary conditions

d=d'=0, 0=z

=

onx ==

=

>

and so are functions of the single parameter y defined by

and equivalent to (1) above. The required solutions are

® = (sinh y + sin y + cosh x, sin x_ + sinh x_ cos x, —sinh x_ cos x_

—coshx_sinx,)/8yd,
©® = (cosh x, cos x_ —coshx_cosx,)/2d,

where x_ = y(x = 1) and d = cosh y — cos .

3. Stability analysis
Perturbations ([7, T of the base flow such that
b=A@x)+¥), T=Bz+0x)+T,

are governed by the system

o T
vy ax—o’
. oy _aT T, )
VT +4y* - = —+ 4 =272
T4y dx dt A x,2)’
N
b=""=T=0 (=%}
Let
A=A_+e¢,

where € <€ A, and consider solutions

~ 1/2 3/
Y=¢ ¢/I+8([12+82¢/3+---,
T

=& ’T +eT,+ T, +-- -,
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(10)

(1)

(12)
(13)

(14)

(15)

(16)

(a7

(18)

(19)

where ¢; and T, are functions of x, z and appropriate long length and time scales Z and

defined by

-1/2 -1
zZ=¢€ Z, t=¢€e 7.

(20)
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Substitution of (19) into (15)-(17) gives, at order ¢'’*

El

. T,
Vi, dx =0,
44 N oT
1y say B g (o0 2 s 7)
1ty ax AC@&Z q)c?z’
N
b= 10 -2

(21)
(22)

(23)

This is equivalent to the linear stability problem examined by Bergholz [2] and has a solution

¥ = B(Z,7) e“f(x) + B*(Z, 7) e "*f*(x)
T, = B(Z,7)e""g(x) + B*(Z, 7) e "g*(x) ,

*

where * now denotes complex conjugate,

flV_2azf;r+ a:f‘g':‘O,
g~ alg +ay'f =ia A @ - ¥g),

f=f=g=0 (x=%3),

(24)

(25)

(26)
(27)

(28)

and B is a complex amplitude function. The wavenumber a, is the critical wavenumber
associated with the minimum point A, of the neutral curve, as determined in [2]. Table 1
shows values of a_ and A, obtained from the solution of (26)-(28) in the region —3 <x <0
by use of a fourth order Runge—Kutta scheme. Symmetry properties of (26)—(28) allow the

solution to be expressed as

f=rL+if,, g=g +ig,,

Table 1. Critical Rayleigh numbers and wavenumbers

(29)

Y A, a,

6.7 499242.0 2.2804
7 303355.4 2.83
7.5 235511.3 3.4276
8 237826.5 3.8448
9 317211.7 4.38
10 471451.2 4.6988
10.5 577965.3 4.8061
11 702358.9 4.89
11.5 839245.2 4.9639
12 983267.6 5.0541
12.5 1133393.5 5.1643
13 1292823.0 5.29
14 1656755.6 5.5395
15 2098858.0 5.7751
16 2626830.5 5.9962
17 3243503.6 6.2106
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where f, g,, f, and g, are odd and even real functions of x respectively (see Vest and Arpaci
[6)). Six lineary independent real solution vectors

(foa f:;a :;’ ’g’ fe7 f;’ Z’ f'Z’ ge’ gtlz’ go’ gt;) (30)
are computed from x = —1 to x =0. At x =0 application of the symmetry conditions
fo=f=f.=fi=8.=8,=0 (31)

yields a determinant which must vanish at points on the neutral stability curve. The zeros of
the determinant were located by iterative adjustment of A at fixed values of a using
Newton’s method in the generalized version of (26)—(28). The critical points given in Table 1
are in good agreement with those obtained by Bergholz [2] using a Galerkin method. Typical
profiles are shown in Fig. 1 and the solution is normalized so that g (0)=1.

At order &,

(2 2

4 t—
Vi dx 0z 072"’ (32)

W az*

{2
0%,
e
3
0 f
9 °
-1 x \ L
2
102 f,
103 £l

J.a

Fig. 1. Eigenfunctions of the linear stability problem for y = 9.
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V2T, + 4y* ‘;—‘/’2 - AC<®’ 5‘% - 'Z—?) =-2 55‘2
Av<®' j(g v z %% % - (Z_(l; (9(9_?>’ 33)
h="L-T,=0 (==}, (34)
with solutions
b= 22 e + 28 e+ BT + B R + B e ) (39)
T,= 22 eog(e) + T eyt (o) + | BPEG) + BT ) + B e Mg ). (36)

Here the omission of possible eigensolutions proportional to ¢, and T, does not affect the
amplitude equation for B to be determined below. The equations for f, 2, f, g and f, g are

FV-2aif 4 alf- g =dia(alf-f)=x.
g —alg+4yf —ia A(Of- '8 =~2ia g+ A (Of-Dg)=x,, (37)

fw—g_’=0,

_ (38)
g +4yf =ia A (fg* —f*8 +f'g*—f*9),

fV=8alf +16alf-§'=0,

§'—4al§ +4y'f —2ia A (OF-'§) =ia A5~ [5). 2
Again symmetry properties may be used to advantage, giving

f=l—if,, &=4,-is. (40)

f=fo. £&=8; (41)

f=f+if,.  g=g +ig.. (42)

The resulting sets of real equations are solved in the region —j < x <0 using the Runge—

Kutta method and the appropriate symmetry conditions at x =0,
Solutions for f and § may actually be expressed as

f=—1£ H g=_1% s (43)

where on the right-hand sides f and g must be viewed as functions of both x and « at points
on the neutral stability curve A = A(«a) and the derivatives are then evaluated at the critical
point where dA/da =0. The existence of this solution for f‘ and g, despite forcing of the
basic linear system is equivalent, in the numerical solution, to the fact that one row of the
matrix equation obtained from satisfaction of the six boundary conditions at x =0 is
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automatically satisfied. Thus one of the six arbitrary real constants remains undetermined,
equivalent to the existence of the basic eigenfunctions f and g, while the other five can be
consistently determined even though the determinant of the coefficient matrix, which is
identical to that of the basic linear system, is zero. Runge—Kutta computations of f, g, f and
g are carried out in a straightforward manner.

The solution for f, § exists because the adjoint condition

1
f_l(X1F+X2G)dx =0 (44)

associated with the forced system (37) is automatically satisfied. The adjoint functions F and
G which satisfy

FY=2a’F" + a!F - 4y*G' —ia, A 0'G =0, (45)
G'—a’G+F +iaq, AP G=0, (46)
F=F'=G=0 (x==z=1}), (47)

can be expressed in real and imaginary parts as
F=F,+iF,, G=G,+iG,. (48)

In the Runge—Kutta solution for F and G the determinant of the coefficient matrix obtained
from the six real boundary conditions at x = 0 must vanish, providing an additional check on
the computation of the neutral curve, a, and A_.

At order £°'? the solutions for ¢, and T, involve terms proportional to e'** which again
satisfy equations of the form (37) but with

: 7 o 1 azB
x = {dia(al f= ) +23a; f- ") 3z’ (49)
9B s 3’B
— — 4+ tr_ raY — 93 A
x2 =18} 5 +{A(Of - @'8) ~2ia g~ g} ——3
+{ie A, (f8 —Fg+fe*—f*& +2fg* ~2f*'§)} B|B|’
+ {ia (O@'f—P'g)}B . (50)
The adjoint condition (44) now implies that consistent solutions exist only if
9B 3’B
013;=azﬁ+033—043|3|2’ (51)

where

0

al = _% {goGo - geGe} dx ’ (52)
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4]
0= [ (Cug. .+ ALOF - NG, + Qat, + 5, + A0, - OF))G,

+(a.fy—dalf, +6alf, ~2f DF, + (4o fi— 4a2f. ~ 60l f+2fDE ) dx,  (53)
[0}
a=a, [ (@', ~04)GC, + (@5, - 6,)G,) dx, (54)

0
a,=aA, f (2(f.e.-fg,+fig,—fig)+fe.—Fg,—Ffg, +Fg —f& +1ElG.
+2fg +f8.—fif, —fig)+ .6 fig.—f.6.~f.E.+fg. + F.g,1G,}dx. (55)

These integrals were calculated using Simpson’s rule. Most Runge—Kutta computations were
carried out with 80 steps across the region —j <x =<0 for the basic linear and adjoint
functions and 40 for the higher-order functions. Checks with double step sizes were carried
out in several cases and indicated excellent accuracy for the finer grid.

4. Results and discussion

The amplitude coefficients (52)~(55) are shown as functions of the base-flow parameter vy in
Fig. 2. There is clearly a singular behaviour near vy, associated with the corresponding
behaviour of A,. As vy increases from v, the base flow develops regions of weak flow reversal
near x =0 (v >7.85) and the nonlinear coefficient a,/a, decreases initially. It becomes

|

L A . i '
Y. 8 12 Y 16
Fig. 2. Amplitude equation coefficients a,/a,, a,/a,, a,/a,.
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slightly negative near y = 10, indicating a small region of subcritical instability there, but
rises again to higher values beyond that. Thus in most circumstances a stable finite-amplitude
motion exists as A increases above A, and Fig. 3 shows a typical streamline pattern,
accurate to order £''% for the case where y = 11.5. Here B = (a,/a,)"'? is taken to be the
constant steady-state value corresponding to the periodic solution of (51) for which the
disturbance amplitude is maximum i.e. for which the adjustment to the critical wavelength
represented by the spatial modulation term 3°B/3Z" is zero. Note that a large value of ¢
must be selected in order for the disturbance flow to have a visible impact on the base state.
This merely reflects the (typically) large numerical value of A, so that in Fig. 3 even with
£=5x10" the perturbation to A, in (18), which corresponds to A/A_=~1.06, represents
only a 6% change in the Rayleigh number. For the selected value of ¢ the main features of
the overall motion in Fig. 3 are large counter-clockwise rolls separated by weaker regions of
clockwise rotation. Similar behaviour has been observed in both numerical work ([7], [8])
and experiments ([1], [6], [9]). Recent experimental work by Simpkins and Godreau [10]
using a large-Prandtl-number silicone oil shows a streamline pattern very similar to that of
Fig. 3, including both the separate co-rotating eddies within each main roll and the weaker
counter-rotating rolls referred to as ‘tertiary’ motion by Elder [1]. Also, both experimental
and numerical work has shown that the main counter-clockwise rolls slant up towards the
hotter wall at the onset of motion, in the manner depicted in Fig. 3.

At large vlaues of y the magnitudes of the amplitude coefficients can be estimated from
scalings associated with the development of buoyancy layers near each vertical plane where
xx1=0(y""). Here ®= O(y?) and ©® =0(1) while in the intervening core region
® =1y~ and ®=0. The linear stability problem then has

a ~1.6y"7, A ~153y77 (y—oo), (56)

with f=0(y ") and g =0(1) in buoyancy layers and core (see Daniels [5]). The corre-
sponding scalings for the higher-order terms involved in the nonlinear analysis of Section 3
then suggest that

a,/a; = 0(75/2) > a,la,= 0(75/2) > a,/ay= 0(77/2) > (57)
as y— .
H ».
e w=-8' ®
5107 5

p4

.9
(@] J 1

- .k fe) * }|_
Fig. 3. Streamlines 10°y/A predicted by the present theory for y = 11.5 (A = 839245, a, =4.9639) and ¢ = 5 X 10*
(A = 889245). Base profiles of velocity and temperature are also shown.
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